Go, Vantage point
가까운 곳을 걷지 않고 서는 먼 곳을 갈 수 없다.
Github | https://github.com/overnew/
Blog | https://everenew.tistory.com/
[정수론] 에라토스테네스의 체와 소인수 분해
에라토스테네스의 체 "에라토스테네스의 체(Sieve of Eratosthenes)"는 3세기의 그리스 수학자 에라토스테네스가 정리한 소수를 찾는 방법이다. n이하의 자연수에서 소수의 배수를 차례대로 소거하여 최종적으로 n이 남아있다면 n은 소수임을 알아낼 수 있다. 에라토스테네스의 체 구현에는 해당 수가 소수인지 아닌지만 저장하는 bool형의 자료구조가 필요하며, 아래 두 가지의 최적화를 거친다. 1. n이 인수가 있다면 인수는 √n 이하의 수와 그 이상의 수의 쌍으로 이루어지기 때문에 √n의 수까지만 확인해도 판정이 가능하다. 2. i의 배수를 지울때는 i*i이하의 값들은 이미 i이하의 값의 배수(ex. i*3, i*4, i*5 ... i*(i-1) 는 이미 소거)이므로 i*i이상의 값부터 소거하면 된..
알고리즘 공부/알고리즘 기법
2021. 1. 12. 23:39